Showing posts with label religion. Show all posts
Showing posts with label religion. Show all posts

Saturday, 26 January 2013

A Singular Thesis

The information revolution has brought our planet to an inflexion point. This is our generation's industrial revolution, and conventional wisdom of all sorts is suddenly in doubt. But is the universe really about to wake up? Are we about to look into the face of God? Ray Kurzweil thinks so.


Julian Jaynes rounds out his wonderful The Origins of Consciousness in the Breakdown of the Bicameral Mind with a sanguine remark that the idea of science is rooted in the same impulse that drives religion: the desire for “the Final Answer, the One Truth, the Single Cause”.

Nowhere is this impulse better illustrated, or the scientific mien so resemblant of a religious one, than in Ray Kurzweil’s hymn to forthcoming technology, The Singularity Is Near. For if ever a man were committed overtly - fervently, even - to such a unitary belief, it is Ray Kurzweil. And the sceptics among our number could hardly have asked for a better example of the pitfalls, or ironies, of such an intellectual fundamentalism: one one hand, this sort of essentialism features prominently in the currently voguish denouncements of the place of religion in contemporary affairs, often being claimed as a knock-out blow to the spiritual disposition. On the other, it is too strikingly similar in its own disposition to be anything of the sort. Ray Kurzweil is every inch the millenarian, only dressed in a lab-coat and not a habit.

Kurzweil believes that the “exponentially accelerating” “advance” of technology has us well on the way to a technological and intellectual utopia/dystopia (this sort of beauty being, though Kurzweil might deny it, decidedly in the eye of the beholder) where computer science will converge on and ultimately transcend biology and, in doing so, will transport human consciousness into something quite literally cosmic. This convergence he terms the “singularity”, a point at which he expects with startling certainty that the universe will “wake up”, and many immutable limitations of our current sorry existence (including, he seems to say, the very laws of physics) will simply fall away.

Some, your correspondent included, might wonder whether, this being the alternative, our present existence is all that sorry in the first place.

But not Raymond Kurzweil. This author seems to be genuinely excited about a prospect which sounds rather desolate, bordering on the apocalyptic, in those aspects where it manages to transcend sounding simply absurd. Which isn’t often. One thing you could not accuse Ray Kurzweil of is a lack of pluck; but there’s a fine line between bravado and foolhardiness which, in his enthusiasm, he may have crossed.

His approach to evolution is a good example. He talks frequently and modishly of the algorithmic nature of evolution, but then makes observations not quite out of the playbook, such as: “the key to an evolutionary algorithm ... is defining the problem. ... in biological evolution the overall problem has always been to survive” and “evolution increases order, which may or may not increase complexity”.

Kurzweil seems to be genuinely excited about a prospect which sounds rather desolate, bordering on the apocalyptic, wherever it manages to transcend sounding simply absurd. Which isn’t often.
But to suppose an evolutionary algorithm has “a problem it is trying to solve” - in other words, a design principle - is to emasculate its very power, namely the facility of explaining how a sophisticated phenomenon comes about *without* a design principle. Evolution works because organisms (or genes) have a capacity - not an intent - to replicate themselves. Nor, necessarily, does evolution increase order. It will tend to increase complexity, because the evolutionary algorithm, having no insight, is unable to “perceive” the structural improvements implied in a design simplification. Evolution has no way of rationalising design except by fiat. The adaptation required to replace an overly elaborate design with more effective but simpler one is, to use Richard Dawkins’ expression, an implausible step back down “Mount Improbable”. That’s generally not how evolutionary processes work: over-engineering is legion in nature; economy of design isn’t, really.

This sounds like a picky point, but it gets to the nub of Kurzweil’s outlook, which is to assume that technology evolves like biological organisms do - that a laser printer, for example, is a direct evolutionary descendent of the printing press. This, I think, is to superimpose a convenient narrative over a process that is not directly analogous: a laser printer is no more a descendent of a printing press than a mammal is a descendent of a dinosaur. Successor, perhaps; descendant, no. But the “exponential increase in progress” arguments that Kurzweil repeatedly espouses depend for their validity on this distinction.

The “evolutionary process” from woodblock printing to the Gutenberg press, to lithography, to hot metal typing, to photo-typesetting, to the ink jet printer (thanks, Wikipedia!) involves what Kurzweil would call “paradigm shifts” but which a biologist might call extinctions; each new technology arrives, supplements and (usually) obliterates the existing ones, not just by doing the same job more effectively, but - and this is critical - by opening up new vistas and possibilities altogether that weren’t even conceived of in the earlier technology - sometimes even at the cost of a certain flexibility inherent in the older technology. That is, development is constantly forking off in un-envisaged, unexpected directions. This plays havoc with Kurzweil’s loopy idea of a perfect, upwardly arcing parabola of utopian progress.

It is what I call “perspective chauvinism” to judge former technologies by the standards and parameters set by the prevailing orthodoxy - being that of the new technology. Judged by such an arbitrary standard older technologies will, by degrees, necessarily seem more and more primitive and useless. The fallacious process of judging former technologies by subsequently imposed criteria is, in my view, the source of many of Ray Kurzweil’s inevitably impressive charts of exponential progress. It isn’t that we are progressing ever more quickly onward, but the place whence we have come falls exponentially further away as our technology meanders, like a perpetually deflating balloon, through design space. Our rate of progress doesn’t change; our discarded technologies simply seem more and more irrelevant through time.

Evolutionary development is constantly forking off in unexpected directions. This plays havoc with Kurzweil’s loopy idea of a perfect, upwardly arcing parabola of utopian progress.
Kurzweil may argue that the rate of change in technology has increased, and that may be true - but I dare say a similar thing happened at the time of the agricultural revolution and again in the industrial revolution - we got from Stephenson’s rocket to the diesel locomotive within 75 years; in the subsequent 97 years the train’s evolution been somewhat more sedate. Eventually, the “S” curves Kurzweil mentions flatten out. They clearly aren’t exponential, and pretending that an exponential parabola might emerge from a conveniently concatenated series of “S” curves seems credulous to the point of disingenuity. This extrapolation into a single “parabola of best fit” has heavy resonances of the planetary “epicycle”, a famously desperate attempt of Ptolemaic astronomers to fit “misbehaving” data into what Copernicans would ultimately convince the world was a fundamentally broken model.

If this is right, then Kurzweil’s corollary assumption - that there is a technological nirvana to which we’re ever more quickly headed - commits the inverse fallacy of supposing the questions we will ask in the future - when the universe “wakes up”, as he puts it - will be exactly the ones we anticipate now. History would say this is a naïve, parochial, chauvinistic and false assumption.

And that, I think, is the nub of it. One feels somewhat uneasy so disdainfully pooh-poohing a theory put together with such enthusiasm and such an energetic presentation of data (and to be sure, buried in Kurzweil’s breathless prose is plenty of learning about technology which, if even half-way right, is fascinating), but that seems to be it. I suppose I am fortified by the nearby predictions made just seven years ago, seeming not to have come anything like true just yet:

“By the end of this decade [i.e., by 2010] computers will disappear as distinct physical objects, with displays built in our eyeglasses and electronics woven into our clothing”

On the other hand I could find scant reference to “cloud computing” or equivalent phenomena like the Berkeley Open Infrastructure for Network Computing project which spawned schemes like SETI@home in Kurzweil’s book. Now here is a rapidly evolving technological phenotype, for sure: hooking up thousands of serially processing computers into a massive parallel network, giving processing power way beyond any technology currently envisioned. It may be that this adaptation means we simply don’t need to incur the mental challenge of molecular transistors and so on, since there must, at some point, be an absolute limit to miniaturisation, as we approach it the marginal utility of developing the necessary technology will swan dive just as the marginal cost ascends to the heavens; whereas the parallel network involves none of those limitations. You can always hook up yet another computer, and every one will increase performance.

I suppose it’s easy to be smug as I type on my decidedly physical computer, showing no signs of being superseded with VR Goggles just yet and we’re already three years into the new decade (he also missed the mobile computing revolution, come to think of it), but the point is that the evolutionary process is notoriously bad at making predictions (until, that is, the results are in), being path-dependent as it is. 


You can’t predict for developments that haven’t yet happened. Kurzweil glosses over this shortfall at his theory’s cost. 

A version of this article was first published on Amazon in 2010.

Saturday, 12 January 2013

Occam’s Razorburn


Stephen Hawking’s latest book raises far more questions than it answers. Such as, why hasn’t he been reading Thomas Kuhn, and what really is the benefit of unifying theories which don't seem to need unification?

In which we meet yet another first-class scientist who wishes to self-identify as a second-class philosopher and a comedian from the back end of steerage.

Since few will buy A Grand Design for its wit we can forgive Stephen Hawking's appalling attempts to be funny, but it's not so easy to forgive his philosophical ignorance. Certain physical scientists might be better off unacquainted with the modern philosophy of science (though those who know it possess a welcome sense of perspective and humility). But not world-renowned cosmologists. Their field continually bumps up against the boundary of what science even is (and it doesn't have a "no-boundary condition", whatever that might be).

So when Stephen Hawking claims that "philosophy has not kept up with modern science, especially physics" it suggests not only a lack of perspective and humility, but that Hawking has been skipping on some required reading.  Especially since, having written off the discipline, Hawking seems barely acquainted with it. He mentions few philosophers more recent than Rene Descartes (d. 1650). So it is hard to know who he thinks hasn't kept up.

Particularly when Hawking's first grand pronouncement is "model-dependent reality": the idea that there may be alternative ways to model the same physical situation with fundamentally different elements and concepts. "If [such different models] accurately predict the same events, one cannot be said to be more real than the other." Physics has, apparently, been forced into this gambit following recent failures to get unifying calculations to work themselves out. In any case it isn't quite the neat trick Hawking thinks it is.

Firstly, while model-dependent reality might be news to Stephen Hawking (he seems to think it the fruit of modern physics' womb) the philosophers he hasn't been reading have been talking about it for years, if not centuries, to the constant sound of scientists' excoriations. It is even part of Descartes' philosophical fabric (and, more tellingly, Darwin's, but picking a fight with modern evolutionists, while fun, is a story for another day). That is to say, it sounds like it is the physicists who are finally catching up with the philosophers and not the other way around.

Secondly, in the grand game of philosophers' football that Cosmology has become, the model-dependent reality play is something of a surrender before kick-off.  For if it is true that the same phenomenon can be plausibly accounted for in multiple, "incommensurate" (© Thomas Kuhn) ways, then the hard question is not about the truth in itself of any model, but the criteria for determining which of the (potentially infinite) models available we should choose in the first place. 

This question is not one for physics, but metaphysics. It necessarily exists outside any given model (© Paul Feyerabend). Here we meet our old friend, Occam's Razor. This isn't a scientific principle at all, but a pragmatic rule of thumb with no intellectual pedigree: all else being equal, take the simplest explanation. Occam's Razor is a favourite instrument for the torture of hapless Christians by grumpy biologists: all your tricksy afterlife wagers and so on fail because evolution is so much less complicated and has so much more explanatory value than the idea that an omniscient, intangible, invisible, omnipotent entity pulling strings we can't see to make the whole thing go.

But, alas, in seeking a grand unification of things that really aren't asking to be unified, cosmology reveals some almighty snags. Unification under Hawking's programme, if it is even possible, involves slaughtering some big old sacred cows. To name a few: causality, the conventional conception of space-time; the idea that scientific theories should be based on observable data and their outcomes testable. It bows to some truly heinous false idols too. For example: seven invisible space-time dimensions, a huge mass of invisible dark matter, an arbitrary cosmological constant, a potentially infinite array of unobservable universes which wink in and out of existence courtesy of a mathematically inferred "vacuum energy"). Hawking doesn't propose solutions to these problems, but seems to think they're a fair price for achieving grand unification.

I'm not so sure: other than intellectual bragging rights, the resulting unified theory has no obvious marginal utility. And it has political drawbacks: believing one's model to be the truth carries potentially unpleasant implications for the suppression of those who don't.

There are practical drawbacks, too. We are asked to reject existing theories, which still have quite a lot of utility, in favour of something that it infinitely harder to understand and work with. The accelerating expansion of the universe without any apparent acting force seems to violate Newton's second law of motion. Without an outrageous end-run, the first nanosecond of the Big Bang (wherein the universe is obliged to expand in size by ten squillion kilometres - i.e. far faster than the speed of light) seems to violate the fundamentals of general relativity. String theory requires seven necessarily unobservable space-time dimensions and/or entirely different universes, and even then doesn't yield a single theory but millions of the blighters, all slightly inconsistent with each other (hence the appeal to "model dependent reality).

From the camp which wielded Occam's Razor so heartily against the Christians, this seems a bit rich. If these are the options, then the razor might slice in favour of the big guy with the beard.

But these aren't the options. We could save a lot of angst, and perhaps could have avoided digging trillion dollar circular tunnel under Geneva, had we employed model dependent reality the way the philosophers saw it and not the scientists (and shouldn't we call a spade a spade and label it cognitive relativism, by the way?). Since it crossed the event horizon of observability modern cosmology has become arcane, stunt-mathematics. If there were a chance that it might deliver time-travel, hyperspace or a tool for locating wormholes to other galaxies or universes then one could see the point in this intellectual onanism. But none of that seems to be allowed. So we should therefore ask the question "but why? What's the point? What progress do you promise that we can't achieve some other way?" No one seems to be able to answer that question.

But if we park it, what's left of Stephen Hawking's latest book is some pretty ropey jokes.

Sunday, 22 January 2012

Apocalypse/Nirvana


When the universe wakes up, will it smell the coffee? 
Not everyone is as certain as Ray Kurzweil that the End of History is at hand.

L'observatoire de St-Véran by Сергей'


JULIAN JAYNES rounds out his wonderful The Origins of Consciousness in the Breakdown of the Bicameral Mind with a sanguine remark that the idea of science is rooted in the same impulse that drives religion: the desire for "the Final Answer, the One Truth, the Single Cause".

Nowhere is this impulse better illustrated, or the scientific mien so resemblant of a religious one, than in Ray Kurzweil's hymn to forthcoming technology, The Singularity Is Near. For if ever a man were committed overtly - fervently, even - to such a unitary belief, it is Ray Kurzweil. And the sceptics among our number could hardly have asked for a better example of the pitfalls, or ironies, of such an intellectual fundamentalism: one one hand, this sort of essentialism features prominently in the currently voguish denouncements of the place of religion in contemporary affairs, often being claimed as a knock-out blow to the spiritual disposition. On the other, it is too strikingly similar in its own disposition to be anything of the sort. Ray Kurzweil is every inch the millenarian, only dressed in a lab-coat and not a habit.

Kurzweil believes that the "exponentially accelerating" "advance" of technology has us well on the way to a technological and intellectual utopia/dystopia (this sort of beauty being, though Kurzweil might deny it, decidedly in the eye of the beholder) where computer science will converge on and ultimately transcend biology and, in doing so, will transport human consciousness into something quite literally cosmic. This convergence he terms the "singularity", a point at which he expects with startling certainty that the universe will "wake up", and many immutable limitations of our current sorry existence (including, he seems to say, the very laws of physics) will simply fall away.

Some, your correspondent included, might wonder whether, this being the alternative, our present existence is all that sorry in the first place.

But not Raymond Kurzweil. This author seems to be genuinely excited about a prospect which sounds rather desolate, bordering on the apocalyptic, in those aspects where it manages to transcend sounding simply absurd. Which isn't often. One thing you could not accuse Ray Kurzweil of is a lack of pluck; but there's a fine line between bravado and foolhardiness which, in his enthusiasm, he may have crossed.
“Kurzweil seems to be genuinely excited about a prospect which sounds desolate, bordering on the apocalyptic, where it manages to transcend sounding simply absurd. Which isn’t often.”
His approach to evolution is a good example. He talks frequently and modishly of the algorithmic nature of evolution, but then makes observations not quite out of the playbook, such as: "the key to an evolutionary algorithm ... is defining the problem. ... in biological evolution the overall problem has always been to survive" and "evolution increases order, which may or may not increase complexity".

But to suppose an evolutionary algorithm has "a problem it is trying to solve" - in other words, a design principle - is to emasculate its very power, namely the facility of explaining how a sophisticated phenomenon comes about *without* a design principle. Evolution works because organisms (or genes) have a capacity - not an intent - to replicate themselves. Nor, necessarily, does evolution increase order. It will tend to increase complexity, because the evolutionary algorithm, having no insight, is unable to "perceive" the structural improvements implied in a design simplification. Evolution has no way of rationalising design except by fiat. The adaptation required to replace an overly elaborate design with more effective but simpler one is, to use Richard Dawkins' expression, an implausible step back down "Mount Improbable". That's generally not how evolutionary processes work: over-engineering is legion in nature; economy of design isn't, really.

This sounds like a picky point, but it gets to the nub of Kurzweil's outlook, which is to assume that technology evolves like biological organisms do - that a laser printer, for example, is a direct evolutionary descendent of the printing press. This, I think, is to superimpose a convenient narrative over a process that is not directly analogous: a laser printer is no more a descendent of a printing press than a mammal is a descendent of a dinosaur. Successor, perhaps; descendant, no. But the "exponential increase in progress" arguments that Kurzweil repeatedly espouses depend for their validity on this distinction.

The "evolutionary process" from woodblock printing to the Gutenberg press, to lithography, to hot metal typing, to photo-typesetting, to the ink jet printer (thanks, Wikipedia!) involves what Kurzweil would call "paradigm shifts" but which a biologist might call extinctions; each new technology arrives, supplements and (usually) obliterates the existing ones, not just by doing the same job more effectively, but - and this is critical - by opening up new vistas and possibilities altogether that weren't even conceived of in the earlier technology - sometimes even at the cost of a certain flexibility inherent in the older technology. That is, development is constantly forking off in un-envisaged, unexpected directions. This plays havoc with Kurzweil's loopy idea of a perfect, upwardly arcing parabola of utopian progress.

It is what I call "perspective chauvinism" to judge former technologies by the standards and parameters set by the prevailing orthodoxy - being that of the new technology. Judged by such an arbitrary standard older technologies will, by degrees, necessarily seem more and more primitive and useless. The fallacious process of judging former technologies by subsequently imposed criteria is, in my view, the source of many of Ray Kurzweil's inevitably impressive charts of exponential progress. It isn't that we are progressing ever more quickly onward, but the place whence we have come falls exponentially further away as our technology meanders, like a perpetually deflating balloon, through design space. Our rate of progress doesn't change; our discarded technologies simply seem more and more irrelevant through time.

Kurzweil may argue that the rate of change in technology has increased, and that may be true - but I dare say a similar thing happened at the time of the agricultural revolution and again in the industrial revolution - we got from Stephenson's rocket to the diesel locomotive within 75 years; in the subsequent 97 years the train's evolution been somewhat more sedate. Eventually, the "S" curves Kurzweil mentions flatten out. They clearly aren't exponential, and pretending that an exponential parabola might emerge from a conveniently concatenated series of "S" curves seems credulous to the point of disingenuity. This extrapolation into a single "parabola of best fit" has heavy resonances of the planetary "epicycle", a famously desperate attempt of Ptolemaic astronomers to fit "misbehaving" data into what Copernicans would ultimately convince the world was a fundamentally broken model. 

If this is right, then Kurzweil's corollary assumption - that there is a technological nirvana to which we're ever more quickly headed - commits the inverse fallacy of supposing the questions we will ask in the future - when the universe "wakes up", as he puts it - will be exactly the ones we anticipate now. History would say this is a naïve, parochial, chauvinistic and false assumption. 
“Assuming there is a technological nirvana to which we’re inevitably headed is to suppose the questions we will ask when the universe “wakes up” will be same the ones we ask now. History would say this is a parochial and chauvinistic assumption.”
And that, I think, is the nub of it. One feels somewhat uneasy so disdainfully pooh-poohing a theory put together with such enthusiasm and such an energetic presentation of data (and to be sure, buried in Kurzweil's breathless prose is plenty of learning about technology which, if even half-way right, is fascinating), but that seems to be it. I suppose I am fortified by the nearby predictions made just four years ago, seeming not to have come anything like true just yet:

"By the end of this decade [i.e., by 2010] computers will disappear as distinct physical objects, with displays built in our eyeglasses and electronics woven into our clothing"

On the other hand I could find scant reference to "cloud computing" or equivalent phenomena like the Berkeley Open Infrastructure for Network Computing project which spawned schemes like SETI@home in Kurzweil's book. Now here is a rapidly evolving technological phenotype, for sure: hooking up thousands of serially processing computers into a massive parallel network, giving processing power way beyond any technology currently envisioned. It may be that this adaptation means we simply don't need to incur the mental challenge of molecular transistors and so on, since there must, at some point, be an absolute limit to miniaturisation, as we approach it the marginal utility of developing the necessary technology will swan dive just as the marginal cost ascends to the heavens; whereas the parallel network involves none of those limitations. You can always hook up yet another computer, and every one will increase performance.

I suppose it's easy to be smug as I type on my decidedly physical computer, showing no signs of being superseded with VR Goggles just yet and we're already two yeasrs into the new decade, but the point is that the evolutionary process is notoriously bad at making predictions (until, that is, the results are in!), being path-dependent as it is. You can't predict for developments that haven't yet happened. Kurzweil glosses over this shortfall at his theory's cost.


 

Tuesday, 19 May 2009

The land of colloidal suspensions and monosaccharides

Is the cosmologist’s yearn for unification a religious impulse?
In this period of transition from its religious basis, science often shares with the celestial maps of astrology, or a hundred other irrationalisms, the same nostalgia for the Final Answer, the One Truth, the Single Cause.
In the cultural troposphere we frequently encounter great, conclusive quests: for the Grail, the End of History, Nirvana, Sunlit Uplands, a Grand Unifying Theory, the Final Reckoning, a Universal Acid, the Promised Land, a paradise of virgins, the Land of Milk and Honey, the Great Day of Judgement – the Singularity – as these if are things we should expect imminently, or at least one day hope to see.
Our collected values – these tales we retell ourselves compulsively – reinforce and hammer home the idea of an eventual conclusion to our labour: in literature the mythical archetype identified by Joseph Campbell is consciously and accidentally replicated in many of the stories we tell ourselves. 
The unvarying narrative is linear progression goes, roughly, like so: imbalance, challenge, fortitude, reckoning and, at the very last, final victory and dominion. Even Campbell’s “mono-myth” itself takes this form of unification: it is an uncomfortable shoe-horning of geographically and linguistically dispersed creation myths, that dont quite fit, into a single archetypal story.
Mythical stories, of course, tend not to ask “and then what?” The archetype refuses to consider these very consequences (naturally: it assumes there are no more consequences). This bleeds into our metaphysics. We are acculturated to yearn for “closure”. It suits us to suppose we’re headed somewhere, that whether or not we personally live to feast our eyes upon the promised land, at least our descendants will. (Are we fated, like Moses, to be denied at the last, our greatest pleasure to watch from a distance? And was this really a disappointment for him? Did Moses not go to heaven?)
We predicate our existence on that hope: While we, personally, may fall by the wayside our struggle will not have been in vain.
This Will to Closure is a religious idea. We know – well, we ought to, by now – that there is no cure for war; that solutions create problems, reward takes risk, supply creates demand, fulfilment creates expectation. The land of milk and honey is a terrifying idea (what would we do all day? Just eat? Would we apprehend a need for literature? Art? Discourse? Change? Why?), it is also an absurd one, because what we call milk and honey is precisely what be believe to be just somewhat out of our reach. Gold’s intrinsic worth is its very scarcity.
So whatever Heaven might be, we know it can’t be filled with only compliant virgins and winged granddads plucking on harps. That would be ghastly, and heaven isn’t ghastly, Q.E.D. There will be strife, discord, bitterness and fury because on these things, despite ourselves, we thrive. Life is the very process of solving these problems, answering these questions.
The land of milk and honey is a terrifying idea. What would we do all day? Just eat?
 
The Will to Closure is an indulgence though; we truck with it only because, deep down, we know it to be misconceived. We can’t have it, and we wouldn’t want it if we could. Who wants a final solution?
So much for the religious Will to Closure. But there is a scientific analogue: the aspiration to grand theoretical unification: call it the Will to Reduction. This is the proposition that Science is a singular, proper noun, that it will accordingly eventually yield a single, coherent, closed system of rules; a complete operating manual for the universe.
This is no less religious an idea. 
To be sure, the Will to Reduction is a noble quest, but its practical importance is in its aspiration and not its outcome. It generates useful practical tools as a by-product. The prospect that Science might actually reach a conclusion would be as catastrophic as the great day of judgement, were it not as equally absurd:
For what would we then do? Our lot would be as dismal as an entrant’s to heaven. All knowledge, all fiction, all superfluity, all contingency would cancel out to a common factor, and a single, integrated über machine would be left; a super brain. What would remain would be no different from God, and in a final hot blast of logic we should redundantly shrivel and evaporate in His sight, the question WHY AM I HERE? having been answered, without irony or compassion, AS OF NOW, YOU’RE NOT.
Absurd, of course, because such an extrapolation isn’t possible. Like our moral knowledge, or technological knowledge is path-dependent, contingent on the questions we want to ask. The contingency of knowledge is fundamental to its acquisition, and to its use. 
It's a Dappled World, as Nancy Cartwright put it, and thank the Lord (if you'll excuse the expression) for that.